
Institut für Robuste

Leistungshalbleitersysteme

www.ilh.uni-stuttgart.de

16.04.2025

Development of a 
graphical user 
interface (GUI) for 
the control and 
visualization of an 
MMIC matching 
algorithm

Task:

• Familiarization with the existing Python backend
and the matching algorithm

• Conception and design of a GUI layout (e.g. with
PyQt, Tkinter, etc.)

• Connection of the user interface to the API
system for controlling the system components

• Implementation of live diagrams (e.g. with
matplotlib, Plotly or pyqtgraph)

• Integration of logging and export functions (CSV,
PNG etc.)

• Carrying out tests on the real system

Requirements:

• Good knowledge of PythonExperience with GUI
frameworks (e.g. PyQt5, Tkinter)

• Basic understanding of signal processing or RF
systems is an advantage

• Structured and independent way of working

Supervision & general conditions:

• Start: as soon as possible (by arrangement)

• Duration: approx. 3 - 6 months (e.g. as a
Bachelor/research/HiWi thesis)

Mathias Scharpf, M.Sc.

Pfaffenwaldring 31, D-70569 Stuttgart,

mathias-pius.scharpf@ilh.uni-stuttgart.de

+49(0)711 / 685 60817

HiWi/
Bachelor/
Researchproject

vacancy

HF

Background:

In our laboratory, we are developing an algorithm
for the linearization of power amplifiers using a so-
called LRFIC (Linearizer RF IC). The adjustment
algorithm optimizes the output intermodulation
products of the system by selectively controlling
individual system components. The aim is to create
a modular, user-friendly interface that controls the
algorithm, visualizes measurement results and
controls system parameters via an API.

Objective of the work:

The aim of this work is to create an intuitive GUI
that fulfills the following tasks:

• Control of the adjustment algorithm (start, stop,
parameter selection)

• Display of measurement results (e.g. IM3, IM5,
phase positions, gain)

• Interactive change of control variables (e.g.
phase, level, filter)

• Visualization of the optimization progression
(e.g. progression of IM3, IM5)

• Communication with the backend (e.g. via
Python API)


