

Universität Stuttgart

Institut für Robuste Leistungshalbleitersysteme

M. Sc. Ruben Schnitzler Pfaffenwaldring 47, D-70569 Stuttgart, ruben.schnitzler@ilh.uni-stuttgart.de +49 (0) 711 685 68697 12.10.2022

In modern power electronics an ever increase in power density and efficiency is pursued. Therefore soft-switching of widebandgap semiconductors for high system performance is utilized. While high system advantages can be achieved, the prediction of those soft-switching losses become particular difficult with electrical measurements. Therefore time-consuming calorimetric measurements are utilized to characterize those losses accurately. Only time-efficient recently calorimetric approaches measurement have been developed which simplifies the extraction of the influence of several parameters.

In this Thesis a variable inductive load exhibiting low parasitics should be build and automated for the already existing measurement set-up. Furthermore the parasitics of the inductive load should be analyzed.

Timeplan:

- Familirization & literature research (10%)
- Construction of power-blocking stages and possible coils (35%)
- Characterization of the parasitics of the variable inductive load (20%)
- Automation of the inductive load (20%)
- Thesis writing and presentation (15%)

Helpful previous knowledge:

- Power electronics I / RPSS 1 & RPSS 2
- Matlab/Microcontroller programming

Bachelor thesis

Automation of an Variable Inductive Load for Automated Calorimetric Measurements

LE

Power-blocking stage for the inductive load

Possible inductive load with different setable values.

