Dieses Bild zeigt Christopher Grötsch

Christopher Grötsch

Herr Dr.-Ing.

Wissenschaftlicher Mitarbeiter
Institut für Robuste Leistungshalbleitersysteme

Kontakt

Deutschland

Fachgebiet

  • 2.5 D and 3 D - Electromagnetic Field Simulations
  • Full Large Signal Analysis of Non-Linear Circuits
  • Design of Frequency Converters and Mulitpliers from 30 – 300 GHz for High Data Rate Communication and High Resolution Radar Applications

Chipfoto_Rx

FF_Chip FernfeldLinse

 
  1. C. M. Grötsch, S. Wagner, and I. Kallfass, “An Active Gate-Pumped Transconductance Upconverter for Terahertz Frequencies,” in 2019 12th German Microwave Conference (GeMiC), Mar. 2019, pp. 236–239. doi: 10.23919/GEMIC.2019.8698132.
  2. L. Manoliu, C. Grötsch, and I. Kallfass, “Design and Optimization of Mixers Using Load-Pull Analysis of Higher Order Intermodulation Products,” in 2019 12th German Microwave Conference (GeMiC), Mar. 2019, pp. 135–138. doi: 10.23919/GEMIC.2019.8698173.
  3. I. Dan, C. M. Grötsch, S. Shiba, and I. Kallfass, “Considerations on Local Oscillator Isolation in a Terahertz Wireless Link Used for Future Communication Systems,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Sep. 2018, pp. 1–2. doi: 10.1109/IRMMW-THz.2018.8510497.
  4. C. M. Grötsch, H. Mabler, A. Leuther, and I. Kallfass, “An Active Multiplier-by-Six S-MMIC for 500 GHz,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Sep. 2018, pp. 1–2. doi: 10.1109/IRMMW-THz.2018.8510122.
  5. I. Dan, C. M. Grötsch, S. Shiba, and I. Kallfass, “Investigation of local oscillator isolation in a 300 GHz wireless link,” in 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Nov. 2017, pp. 1–5. doi: 10.1109/COMCAS.2017.8244765.
  6. C. Grötsch, A. Tessmann, A. Leuther, and I. Kallfass, “Ultra-wideband quadrature receiver-MMIC for 240 GHz high data rate communication,” in 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Aug. 2017, pp. 1–2. doi: 10.1109/IRMMW-THz.2017.8066868.
  7. M. Arndt et al., “Optimization of the Microwave Properties of the Kinetic-Inductance Bolometer (KIBO),” IEEE Transactions on Applied Superconductivity, vol. 27, Art. no. 4, Jun. 2017, doi: 10.1109/TASC.2017.2653098.
  8. S. M. Dilek, P. Harati, C. Groetsch, and I. Kallfass, “Performance analysis of E-band transceivers based on IQ Up-converter impairments using a circuit-to system-level approach,” in 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Nov. 2017, pp. 1–5. doi: 10.1109/COMCAS.2017.8244802.
  9. C. Grötsch, A. Tessmann, S. Wagner, and I. Kallfass, “On-chip post-production tuning of I/Q frequency converters using adjustable coupler terminations,” in 2017 12th European Microwave Integrated Circuits Conference (EuMIC), Oct. 2017, pp. 273–276. doi: 10.23919/EuMIC.2017.8230712.
  10. S. Wuensch, R. Prinz, C. Groetsch, and M. Siegel, “Optimized Microwave LEKID Arrays for High-Resolution Applications,” IEEE Transactions on Applied Superconductivity, vol. 23, Art. no. 3, Jun. 2013, doi: 10.1109/TASC.2013.2251056.

Microwave Analog Frontend Design (MAFD)

Zum Seitenanfang